Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache
class:
LRUCache(int capacity)
Initialize the LRU cache with positive sizecapacity
.int get(int key)
Return the value of thekey
if the key exists, otherwise return-1
.void put(int key, int value)
Update the value of thekey
if thekey
exists. Otherwise, add thekey-value
pair to the cache. If the number of keys exceeds thecapacity
from this operation, evict the least recently used key.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // cache is {1=1} lRUCache.put(2, 2); // cache is {1=1, 2=2} lRUCache.get(1); // return 1 lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3} lRUCache.get(2); // returns -1 (not found) lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3} lRUCache.get(1); // return -1 (not found) lRUCache.get(3); // return 3 lRUCache.get(4); // return 4
Constraints:
1 <= capacity <= 3000
0 <= key <= 104
0 <= value <= 105
- At most 2
* 105
calls will be made toget
andput
.
Solution1:
Hashmap + DoubleLinkedList
Intuition
This Java solution is an extended version of the the article published on the Discuss forum.
The problem can be solved with a hashmap that keeps track of the keys and its values in the double linked list. That results in \mathcal{O}(1)O(1) time for put
and get
operations and allows to remove the first added node in \mathcal{O}(1)O(1) time as well.


One advantage of double linked list is that the node can remove itself without other reference. In addition, it takes constant time to add and remove nodes from the head or tail.
One particularity about the double linked list implemented here is that there are pseudo head and pseudo tail to mark the boundary, so that we don’t need to check the null
node during the update.


Implementation
class DLinkedNode():
def __init__(self):
self.key = 0
self.value = 0
self.prev = None
self.next = None
class LRUCache():
def _add_node(self, node):
"""
Always add the new node right after head.
"""
node.prev = self.head
node.next = self.head.next
self.head.next.prev = node
self.head.next = node
def _remove_node(self, node):
"""
Remove an existing node from the linked list.
"""
prev = node.prev
new = node.next
prev.next = new
new.prev = prev
def _move_to_head(self, node):
"""
Move certain node in between to the head.
"""
self._remove_node(node)
self._add_node(node)
def _pop_tail(self):
"""
Pop the current tail.
"""
res = self.tail.prev
self._remove_node(res)
return res
def __init__(self, capacity):
"""
:type capacity: int
"""
self.cache = {}
self.size = 0
self.capacity = capacity
self.head, self.tail = DLinkedNode(), DLinkedNode()
self.head.next = self.tail
self.tail.prev = self.head
def get(self, key):
"""
:type key: int
:rtype: int
"""
node = self.cache.get(key, None)
if not node:
return -1
# move the accessed node to the head;
self._move_to_head(node)
return node.value
def put(self, key, value):
"""
:type key: int
:type value: int
:rtype: void
"""
node = self.cache.get(key)
if not node:
newNode = DLinkedNode()
newNode.key = key
newNode.value = value
self.cache[key] = newNode
self._add_node(newNode)
self.size += 1
if self.size > self.capacity:
# pop the tail
tail = self._pop_tail()
del self.cache[tail.key]
self.size -= 1
else:
# update the value.
node.value = value
self._move_to_head(node)
Solution2:
Doubly linked lists to store the (key, val)
pair, and dictionary mapping key
to the corresponding node. Time complexity for both get
and put
: O(1)
. Space complexity:
class ListNode(object):
def __init__(self, key, val):
self.key = key
self.val = val
self.prev = None
self.next = None
class LRUCache(object):
def __init__(self, capacity):
"""
:type capacity: int
"""
self.head = ListNode(-1, -1)
self.tail = self.head
self.key2node = {}
self.capacity = capacity
self.length = 0
def get(self, key):
"""
:type key: int
:rtype: int
"""
if key not in self.key2node:
return -1
node = self.key2node[key]
val = node.val
if node.next:
node.prev.next = node.next
node.next.prev = node.prev
self.tail.next = node
node.prev = self.tail
node.next = None
self.tail = node
return val
def put(self, key, value):
"""
:type key: int
:type value: int
:rtype: void
"""
if key in self.key2node:
node = self.key2node[key]
node.val = value
if node.next:
node.prev.next = node.next
node.next.prev = node.prev
self.tail.next = node
node.prev = self.tail
node.next = None
self.tail = node
else:
node = ListNode(key, value)
self.key2node[key] = node
self.tail.next = node
node.prev = self.tail
self.tail = node
self.length += 1
if self.length > self.capacity:
remove = self.head.next
self.head.next = self.head.next.next
self.head.next.prev = self.head
del self.key2node[remove.key]
self.length -= 1
Solution3:
Using OrderedDict:
class LRUCache:
def __init__(self, capacity):
"""
:type capacity: int
"""
self.capacity = capacity
self.dic = collections.OrderedDict()
def get(self, key):
"""
:type key: int
:rtype: int
"""
if key not in self.dic:
return -1
val = self.dic[key]
self.dic.move_to_end(key)
return val
def put(self, key, value):
"""
:type key: int
:type value: int
:rtype: void
"""
self.dic[key] = value
self.dic.move_to_end(key)
if len(self.dic) > self.capacity:
self.dic.popitem(last=False)
- move_to_end():
This method is used to move an existing key of the dictionary either to end or to the beginning. There are two versions of this function –
Syntax:
move_to_end(key, last = True)
If last is True then this method would move an existing key of the dictionary in the end otherwise it would move an existing key of dictionary in the beginning. If the key is moved at the beginning then it serves as FIFO ( First In First Out ) in queue.