146. LRU Cache

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

  • LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
  • int get(int key) Return the value of the key if the key exists, otherwise return -1.
  • void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.

The functions get and put must each run in O(1) average time complexity.

Example 1:

Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // cache is {1=1} lRUCache.put(2, 2); // cache is {1=1, 2=2} lRUCache.get(1); // return 1 lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3} lRUCache.get(2); // returns -1 (not found) lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3} lRUCache.get(1); // return -1 (not found) lRUCache.get(3); // return 3 lRUCache.get(4); // return 4

Constraints:

  • 1 <= capacity <= 3000
  • 0 <= key <= 104
  • 0 <= value <= 105
  • At most 2 * 105 calls will be made to get and put.

Solution1:

Hashmap + DoubleLinkedList

Intuition

This Java solution is an extended version of the the article published on the Discuss forum.

The problem can be solved with a hashmap that keeps track of the keys and its values in the double linked list. That results in \mathcal{O}(1)O(1) time for put and get operations and allows to remove the first added node in \mathcal{O}(1)O(1) time as well.

compute

One advantage of double linked list is that the node can remove itself without other reference. In addition, it takes constant time to add and remove nodes from the head or tail.

One particularity about the double linked list implemented here is that there are pseudo head and pseudo tail to mark the boundary, so that we don’t need to check the null node during the update.

compute

Implementation

class DLinkedNode(): 
    def __init__(self):
        self.key = 0
        self.value = 0
        self.prev = None
        self.next = None
            
class LRUCache():
    def _add_node(self, node):
        """
        Always add the new node right after head.
        """
        node.prev = self.head
        node.next = self.head.next

        self.head.next.prev = node
        self.head.next = node

    def _remove_node(self, node):
        """
        Remove an existing node from the linked list.
        """
        prev = node.prev
        new = node.next

        prev.next = new
        new.prev = prev

    def _move_to_head(self, node):
        """
        Move certain node in between to the head.
        """
        self._remove_node(node)
        self._add_node(node)

    def _pop_tail(self):
        """
        Pop the current tail.
        """
        res = self.tail.prev
        self._remove_node(res)
        return res

    def __init__(self, capacity):
        """
        :type capacity: int
        """
        self.cache = {}
        self.size = 0
        self.capacity = capacity
        self.head, self.tail = DLinkedNode(), DLinkedNode()

        self.head.next = self.tail
        self.tail.prev = self.head
        

    def get(self, key):
        """
        :type key: int
        :rtype: int
        """
        node = self.cache.get(key, None)
        if not node:
            return -1

        # move the accessed node to the head;
        self._move_to_head(node)

        return node.value

    def put(self, key, value):
        """
        :type key: int
        :type value: int
        :rtype: void
        """
        node = self.cache.get(key)

        if not node: 
            newNode = DLinkedNode()
            newNode.key = key
            newNode.value = value

            self.cache[key] = newNode
            self._add_node(newNode)

            self.size += 1

            if self.size > self.capacity:
                # pop the tail
                tail = self._pop_tail()
                del self.cache[tail.key]
                self.size -= 1
        else:
            # update the value.
            node.value = value
            self._move_to_head(node)

Solution2:

Doubly linked lists to store the (key, val) pair, and dictionary mapping key to the corresponding node. Time complexity for both get and put : O(1). Space complexity:

class ListNode(object):
    
    def __init__(self, key, val):
        self.key = key
        self.val = val
        self.prev = None
        self.next = None


class LRUCache(object):


    def __init__(self, capacity):
        """
        :type capacity: int
        """
        self.head = ListNode(-1, -1)
        self.tail = self.head
        self.key2node = {}
        self.capacity = capacity
        self.length = 0
        
        

    def get(self, key):
        """
        :type key: int
        :rtype: int
        """
        if key not in self.key2node:
            return -1
        node = self.key2node[key]
        val = node.val
        if node.next:
            node.prev.next = node.next
            node.next.prev = node.prev
            self.tail.next = node
            node.prev = self.tail
            node.next = None
            self.tail = node
        return val
        
        
        

    def put(self, key, value):
        """
        :type key: int
        :type value: int
        :rtype: void
        """
        if key in self.key2node:
            node = self.key2node[key]
            node.val = value
            if node.next:
                node.prev.next = node.next
                node.next.prev = node.prev
                self.tail.next = node
                node.prev = self.tail
                node.next = None
                self.tail = node   
        else:
            node = ListNode(key, value)
            self.key2node[key] = node
            self.tail.next = node
            node.prev = self.tail
            self.tail = node
            self.length += 1
            if self.length > self.capacity:
                remove = self.head.next
                self.head.next = self.head.next.next
                self.head.next.prev = self.head
                del self.key2node[remove.key]
                self.length -= 1

Solution3:

Using OrderedDict:

class LRUCache:


    def __init__(self, capacity):
        """
        :type capacity: int
        """
        self.capacity = capacity
        self.dic = collections.OrderedDict()
        
		
    def get(self, key):
        """
        :type key: int
        :rtype: int
        """
        if key not in self.dic:
            return -1
        val = self.dic[key]
        self.dic.move_to_end(key)
        return val
        
		
    def put(self, key, value):
        """
        :type key: int
        :type value: int
        :rtype: void
        """
        self.dic[key] = value
        self.dic.move_to_end(key)
        if len(self.dic) > self.capacity:
            self.dic.popitem(last=False)
  • move_to_end():

This method is used to move an existing key of the dictionary either to end or to the beginning. There are two versions of this function – 

Syntax:

move_to_end(key, last = True)

If last is True then this method would move an existing key of the dictionary in the end otherwise it would move an existing key of dictionary in the beginning. If the key is moved at the beginning then it serves as FIFO ( First In First Out ) in queue.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top