CSC 696H: Topics in Reinforcement Learning Theory Fall 2021

Lecture 3: Bellman consistency equation; MRPs; Optimal value function
Lecturer: Chicheng Zhang Scribe: Yinan Li

1 Questions from last class

Recall that last time, we defined the value function of w, V™ : § — R, which is the expected discounted
return of a policy, conditioned on the starting state:

V™(s) =E[Go | so = s,7].

We also defined the action-value function of m, Q™ : S x A — R, which is conditioned additionally on the

starting action:
Q7 (s,a) =E[Gqo | s0 = s,a0 = a, 7).

Using Bellman consistency equation, and eliminating variables V7 (s), we have:

VseS,ae A: Q" (s,a) =r(s,a) +7 Z Z P(s'" | s,a)n(a’ | s)Q™(s',d").

s’eSa’eA

Note that this is a system of linear equations, where the unknown variables are Q™ (s, a)’s, and the known
variables are immediate rewards r(s,a)’s and environmental dynamics.
The questions left from the last time are:

1. Does this system have solutions?
2. If so, is the solution unique?

In other words, we would like to find a plausible choice of f, that satisfies:

fls,a) =r(s,a) +7 ) Y P(s' | s,a)m(a’ | )f(s',a). (1)

s’eSa’eA

For the first question, we observe that f(s,a) = Q7(s,a) is a valid solution to (1). We will answer the
second question in this lecture.

2 Markov Reward Processes (MRPs)

Markov Reward Processes (MRPs) are slight variants of MDPs, where the agent does not have controls on
the environment. Formally, an MRP M is described as:

M = (S?IP)7T7’Y7M)7
where, different from those of MDPs,
1. Transition probability P: S — A(S);

2. Reward function r : § — [0, 1].



Algorithm 1 Agent-environment interaction protocol with an MRP

Initial state zg ~ p
for time steps t =0,1,..., do

Agent receives reward 1y = 7(2¢)

Agent observes next state z;11 ~ P(- | 2¢)
end for

Similar to MDP setting, we could define the value function in MRP context:

V(is)=E [thrt | so = s] .
t=0

Exercise 1. Give a Bellman consistency equation for V.

Exercise 2. Suppose we execute a stationary policy 7 in a given MDP M. Can the interaction process
be seen as an MRP? Here are two possible answers to this exercise.

Answer 1. MRP has the same state space as MDP, and we could let z; = s;, and

P(siy1 =58 | s =5)= Z m(a | s)P(s' | s,a).

acA

Note that there is some subtlety, in that r; is not a deterministic function of s;, but still, we could define
the reward function in expectation:

Elry | st =s] = Z m(a| $)r(s,a).

acA

Answer 2. MRP has the state space S x A, namely z; = (s¢, a¢), and
P[(st41,ae+1) = (8,a") | (s1,a¢) = (5,0)] = P(s" | s,a)m(a’ | &).

MRP has the same reward function as MDP.

3 Back to Bellman consistency equation

Recall that,

VseS,ae A: Q" (s,a) =r(s,a) +7 Z Z P(s'" | s,a)n(a’ | s)Q™(s',d").

s’eSa’eA

and it helps to look at it from linear algebra perspective.
Denote by S = |S], and A = | A,

o= |Q7s.a)|

L : SAx1

L SAx1



PT" = |n(d |s) - P(s|s,a)

SAXSA
Now we are ready to rewrite Bellman consistency equation in the matrix notation,

Q" =r+7-PTQ".

To solve it, rewrite it as:
(L—v-P7)-Q"=r.
Claim 1. I —~ - P™ is invertible.

Proof. Tt suffices to show, Vo # 0, (I — - P™) -2 # 0. To see this, we analyse the ¢, norm.

(L =7 P7) - lloo =[l& =7 P" -l
>[[zlloe = Iy P™ - @[|oo (by triangle ineq.)

Note that each row in P™ sum up to 1, thus we have
(P™-2)il = D wizs] <Y wilzi] < oo
i i
Therefore,

(I =~ P7) - zfloc = (1 = 7)[[x[loc > 0.

Since I —~ - PT is invertible, we are able to claim that

Q"= -~ -P7)"" 1.

Now we take a closer look at entries of (I —~-P™)~!. Analogous to the algebraic fact that 1%

we also have,

(o)
oy —1 t T\t
(I—'Y - P )(s,a),(s/,a’) :ZV (P )(s,a),(s’,a’)
t=0

:Z’ytp [(Stvat) = (slva/) | (507a0) = (Saa)] > 0.
t=0

This is called discounted state-action visitation (occupancy).

= Zfio o

To see the second equality, we analyse the case where t = 2, as an example; this can be easily generalized

to interpret (P7){, . (o oy 88 P[(s1.a) = (s, a') | (s0,a0) = (s,0)].

T\ 2 T T
(P )(s,a),(s’,a’) :Z(‘P )(s,a),(§,&) ’ (P )(gv&)v(slva/)

:ZP[(Slaal) = (5,a) | (s0,a0) = (s,a)] - P[(s2,02) = (s',d') | (s1,01) = (5, )]

=P [(s2,a2) = (s',d') | (s0,a0) = (s,a)]

where the first equality is by matrix multiplication formula, the second equality is by the definition of P™,

and the third is by Markov property and total law of probability.



4 Optimal value function

Optimal value function could be thought of as a more objective measure of how advantage a state is.
Previously, we defined the value function of a state, but that depends on the policy the agent executes. For
example, think about a state that is very close to the goal state, and it is promising to get high reward. But
the policy may not be performing so well, and it is actually directing away from the goal state. In this case,
the value function of the state may be bad, although the state itself is good. Thus we would like a more
objective measure of how ”"good” a state is.

The way we formulate this idea is to define the optimal value function and optimal action-value function
as follows:

V*(s) = max V" (s),

Q*(s,0) = max Q" (s,.0)

here, II is the collection of all policies (including nonstationary ones).

Representing V* with Q*:
V*(s) =maxE[Gy | 59 = s, 7]

:maxZW(a | s)E[Go | so =$,a0 = a,n]
T
acA
< max Z m(a | s)maxE[Go | so = s,a9 = a, 7]
" acA ™

= max Z m(a | $)Q*(s,a). (2)

acA

1 a=argmax, Q*(s,a)

Note that the optimal 7 will be: w(a | s) = i
0 otherwise

then we further have,
V*(s) < max Q*(s,a).
Representing Q* using V*:
Q*(s,a) =maxE[Gq | so = s,a0 = a, 7]
=r(s,a) +v -maxE[G1 | so = s,a0 = a, 7]

=r(s,a) + v - max Z P(s'| s,a)E[G1 | s0 = s,a0 = a,s1 = s, 7]

s'eS
<r(s,a) +~- Z P(s' | s,a) maxE |Gy | so = s,a0 = a,s1 = §', 7]
s’eS 7
<r(s,a) +~- Z P(s" | 5,a)V*(s") (Next class) (3)
s’esS

We will show in next class that, combining equations (2) and (3), we’ll get:

Q*(s,a) S r(s,a) +- ) P(s'| 5,a) maxQ*(s',d).

s'eS



